Management of Clubroot in Canola

S.F. Hwang1, S.E. Strelkov2,
B.D. Gossen3, G. Peng3 and
R.J. Howard1

1Alberta Agriculture and Rural Development
2University of Alberta
3Agriculture and Agri-Food Canada, Saskatoon

2012 Clubroot Summit, March 7, 2012
1. Establishment of a consortium field nursery
Establishment of a consortium field nursery in 2010-2011

- 9.6 kg of clubroot galls were ground in a blender, the spores were suspended in water (10^8 spores/mL concentration)
- Canola (Female Parent A Sterile Seed) were planted along with clubroot spores over about 3 ha of the site in June.
- Irrigation line is in place to encourage disease development.
- 2, 4-D mixed with Roundup was sprayed in Oct. to stop the growth of the plants
- Plants were cut and worked into the soil in Nov.
Canola (Female Parent A Sterile Seed) were planted in 2010 and 2011.
Derek’s nightmare in 2007!

George’s dream comes true in 2010!
High-Tech harvesting in 2010
The inoculum level were tested at several sites throughout the field to ensure even distribution.
2. Industry representatives visited the nursery at various times throughout the summer.
3. Field testing – Edmonton, 2010-11
4. Soil treatments and amendments for amelioration of clubroot of canola

by

S. F. Hwang, S. E. Strelkov,

and V.P. Manolii

Seeding and equipment sanitation 2007-2008
Effects of chemical soil treatments on canola plants in clubroot-infested soil – Leduc, 2007
Effects of soil amendments on canola plants in clubroot-infested soil – Leduc, 2008
Conclusions 2007-08:

- Soil amendments such as calcium carbonate and wood ash, applied at 7.5 t/ha or more reduce the severity of clubroot and improve yield.
- As a chemical soil treatment, Terraclor applied at 90 kg/ha reduces the severity of clubroot, promotes growth, and improves yield. (At 90 kg/ha it costs $1100/ac).
2009-2010 Field Trials

- Locations: Leduc & Edmonton
- Five soil treatments applied in-row:
 - Terraclor (6.7 kg/ha)
 - Calcium Carbonate (CaCO₃, 67 kg/ha)
 - Wood ash (WA, 67 kg/ha)
 - Terraclor + CaCO₃ or WA
- Randomized Complete Block, 4 replicates
Effects of soil treatments on seed yield of canola in clubroot – infested soil

Seed yield (t/ha)

- Edmonton 2009
- Edmonton 2010
- Leduc 2010

- Untreated
- Terraclor
- Calcium carbonate
- Wood ash
- Terraclor + Calcium carbonate
- Terraclor + wood ash
5. Effects of seed treatments on disease severity and yield of canola in clubroot infested soils 2009 – 2010

RCBD near Leduc and Edmonton

- **Helix Xtra** (difenoconazole + fludioxonil)
- **SYN 524**
- **Dynasty** (azoxystrobin)
- Helix Xtra+SYN 524
- Helix Xtra+Dynasty
- Helix Xtra+SYN 524+Dynasty
- Non-treated control
Effects of seed treatments on emergence of canola in clubroot – infested soil in 2010

Seedling emergence (plants/m²)

- Untreated
- Helix XTRA
- SYN 524
- Dynasty
- Helix XTRA + SYN 524
- Helix XTRA + Dynasty
- Helix XTRA + Dynasty + SYN 524

Values with different letters (a, b) within the same seed treatment category indicate significant differences (P < 0.05).
Effects of seed treatments on seed yield of canola in clubroot – infested soil

Seed yield (t/ha)

- Untreated
- Helix XTRA
- SYN 524
- Dynasty
- Helix XTRA + SYN 524
- Helix XTRA + Dynasty
- Helix XTRA + SYN 524 + Dynasty

2009
2010

Effects of seed treatments on seed yield of canola in clubroot – infested soil
Conclusions:

• In-row application of lime, wood ash or Terraclor did not affect seed yield.
• Helix Xtra and Dynasty improved yield over the control in 2009.
• Helix Xtra, SYN 524 and Helix Xtra + SYN 524 + Dynasty improved emergence compared to the control.
• All of the seed treatments improved yield over the control in 2010.
6. Seedling age and inoculum density affect clubroot severity and seed yield in canola by

Introduction

- Plant disease development is regulated by the dynamic interaction of the host, the pathogen, and the environment.
- There is little or no data available regarding the impact of inoculum density and seedling age on clubroot disease development.
Effect of seedling age (0-4 wks) on clubroot disease severity and plant height.
Effect of seedling age on clubroot disease severity under greenhouse conditions
Effects of inoculum density (0-50%) - naturally clubroot-infested soil
Effect of clubroot inoculum concentration on disease severity, plant height and seed yield in clubroot-infested soil (0 - 50%) under greenhouse conditions.
Effect of clubroot severity on plant height and seed yield of canola in clubroot-infested soil.

- For plant height (cm):
 \[y = -5.9762x^2 + 9.4762x + 55.306 \]
 \[R^2 = 0.8616 \]

- For seed yield (g):
 \[y = 0.1305x^2 - 1.1526x + 2.3885 \]
 \[R^2 = 0.9754 \]
Effects of inoculum density - Gall-infested soil
Effect of clubroot spore populations on disease severity, plant height and seed yield in gall-infested soil under greenhouse conditions.
Effect of clubroot severity on plant height and seed yield of canola in soil inoculated with root galls

\[y = -5.8591x^2 + 7.5276x + 63.98 \]

\[R^2 = 0.9813 \]

\[y = 0.2102x^2 - 1.6752x + 3.1436 \]

\[R^2 = 0.998 \]
Conclusions

- Clubroot severity increased and plant height and seed yield decreased with increasing inoculum density.
- The young seedlings had higher clubroot severity, shorter plants and lower yield than inoculation of older seedlings.
- These results indicate that seed treatments with a long residual period (4 weeks or more) may be useful for management of clubroot.
7. Assessment of bait crops to reduce inoculum of clubroot (*Plasmodiophora brassicae*) of canola

by

Introduction

- Use *bait crop* as a component of an integrated clubroot management program.
- A crop that *stimulates resting spore germination* could be planted and then ploughed down before the pathogen completes its life cycle, thereby reducing resting spore populations in heavily infested fields.
Conclusions

- Both host and non-host crops reduced clubroot incidence in greenhouse studies.

- Bait crops did not reduce spore populations or clubroot severity in field studies.

- Use of bait crops is unlikely to be an important component of an IPM program for clubroot of canola.
8. Infection of canola by secondary zoospores of *P. brassicae* produced on a nonhost

By

J. Feng, Q. Xiao, S.F. Hwang,

S.E. Strelkov and B.D. Gossen

DOI 10.1007/s10658-011-9875-2
Causal agent: *P. brassicae*
Secondary Zoospore Cross Infection Study

- **Canola** inoculated by 2nd spore produced
 - from canola C^C
 - from ryegrass C^R

- **Ryegrass** inoculated by spore produced
 - from canola R^C
 - from ryegrass R^R
Primary and secondary infection of ryegrass - 5 days after inoculation with secondary zoospores from canola.
Secondary infection on ryegrass – 35 days after inoculation with secondary zoospores from ryegrass. Bar = 10 μm.
Conclusions

• Secondary zoospores produced on a nonhost can infect a host species.
• Secondary infection can occur in a nonhost plant species.
• Pb can proliferate by cycling within root hairs prior to secondary infection.
• Resistance to secondary infection in ryegrass is induced during primary infection.
9. Effects of Seeding Date and Cultivar Resistance on Clubroot Severity, Seedling Emergence and Yield of Canola

By

Field Studies - Interacting effects of seeding date and cultivar resistance (2010-11)

- Canola cultivars 45H26 (S) and 45H29 (R) serve as main plots
- Seeding dates (Early, Mid, Late) in sub-plots
- Plots were assessed for emergence, clubroot severity, yield and gall weight
Effects of seeding dates on emergence and seed yield of canola in clubroot – infested soil

Emergence (Plants/m²)

- Early: 80 (A)
- Mid: 50 (A)
- Late: 10 (b)

Yield (t/ha)

- Early: 2 (a)
- Mid: 3 (A)
- Late: 1.5 (B)

Seeding Date - Edmonton
Effects of seeding dates on clubroot severity on canola in clubroot – infested soil

- Severity (0-3)
- Gall Weight (g)

Seeding Date - Edmonton

Early

Mid

Late
Effects of seeding dates on emergence and seed yield of canola in clubroot – infested soil

Emergence (Plants/m²)

- Early: A
- Mid: B
- Late: C

Yield (t/ha)

- Early: 0.5
- Mid: 2
- Late: 2.5

Seeding Date - Leduc
Effects of seeding dates on clubroot severity on canola in clubroot – infested soil

Seeding Date - Leduc

- Early
- Mid
- Late

Severity (0-3)

Gall Weight (g)

Severity

Gall Weight

A

a
Effects of cultivar resistance on clubroot severity on canola in clubroot – infested soil

Cultivar - Leduc

Cultivar - Edmonton
Effects of cultivar resistance on emergence and yield of canola in clubroot – infested soil

Cultivar - Leduc

- **Emergence (plants/m²)**:
 - Resistant: 60
 - Susceptible: 50
- **Seed Yield (t/ha)**:
 - Resistant: 3
 - Susceptible: 3.5

Cultivar - Edmonton

- **Emergence (plants/m²)**:
 - Resistant: 40
 - Susceptible: 30
- **Seed Yield (t/ha)**:
 - Resistant: 2.5
 - Susceptible: 2
Cultivar Effect on Clubroot - 2010

45H29 (R)
45H26 (S)
Cultivar Effect on Clubroot - 2011
Cultivar Effect on Clubroot – Sept. 20, 2011

Late season clubroot galls

45H26 45H29
Conclusion – Seeding Date

• Manipulation of *seeding date* and the cropping of *clubroot resistant canola cultivars* can be used as additional tools in a clubroot management program

• Younger seedlings suffered greater disease severity and a greater reduction in plant height and yield than older seedlings in both the resistant and susceptible canola cultivars

• Clubroot resistant canola cultivar *45H29* is not immune to the disease
10. Influence of cultivar resistance and inoculum density on root hair infection of canola by Plasmodiophora brassicaceae

by

Effects of soil inoculum density on growth, disease and yield of canola

<table>
<thead>
<tr>
<th>Soil Dilutions</th>
<th>Height (cm)</th>
<th>Emergence (%)</th>
<th>Yield (g/pot)</th>
<th>Disease Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clubroot-Resistant (45H-29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0:1 (infested soil: soil-less mix)</td>
<td>104 a</td>
<td>72 a</td>
<td>2.79 a</td>
<td>0</td>
</tr>
<tr>
<td>1:8 (infested soil: soil-less mix)</td>
<td>94 b</td>
<td>58 a</td>
<td>2.26 ab</td>
<td>0</td>
</tr>
<tr>
<td>1:1 (infested soil: soil-less mix)</td>
<td>84 c</td>
<td>54 a</td>
<td>1.77 b</td>
<td>0</td>
</tr>
<tr>
<td>1:0 (infested soil: soil-less mix)</td>
<td>92 b</td>
<td>18 b</td>
<td>0.60 c</td>
<td>5.6</td>
</tr>
<tr>
<td>Mean</td>
<td>94 A</td>
<td>51 A</td>
<td>1.85 A</td>
<td>1.4 B</td>
</tr>
</tbody>
</table>

Clubroot-Susceptible (45H-26)				
0:1 (infested soil: soil-less mix)	105 a	72 a	2.67 a	0 c
1:8 (infested soil: soil-less mix)	94 b	42 b	0.78 b	28 b
1:1 (infested soil: soil-less mix)	54 c	28 bc	0.01 c	90 a
1:0 (infested soil: soil-less mix)	40 d	22 c	0.01 c	100 a
Mean	73 B	41B	0.86 B	54.5 A
Colonization of canola root hairs
Effects of soil inoculum level on root hair colonization

% Root hair colonized

% Clubroot infested soil (v:v)

Spores per mL soil-less mix

% Root hair colonization

Resistant
Susceptible

11 50 100

1,000 100,000 10,000,000
Effects of incubation period on root hair colonization

Naturally infested soil

Spores inoculated in soilless mix (10^6/g)
Effects of root hair colonization on disease index of clubroot

\[y = 100 - (0.392e)^{-90x} \]

\[R^2 = 0.99 \]
11. Root Hair Colonization of Resistant and Susceptible Canola by *Plasmodiophora brassicae*

By

Plant Pathology 2012
(Doi: 10.1111/j.1365-3059.2011.02582.x)
To examine the relationship between root hair infection and *P. brassica* DNA detected by q PCR.

Objective:
Effect of cultivar resistance on the index of disease in five canola cultivars
Comparison of bioassay and qPCR analysis

• Five canola cultivars, 45H29, 45H26, 73-77RR, 34-65RR, and 45H73 were planted in cups.
• Each cultivar was sampled at 4, 6, 8, and 10 days after sowing.
• Half of the plants were fixed in FAA for root hair analysis; half were stored for qPCR analysis.
• Weight of *P. brassicae* DNA was estimated using qPCR analysis.
Root hair colonization in five canola cultivars grown in clubroot-infested soil

Days after seeding

% Root hair colonization

4 days 6 days 8 days 10 days

45H29 73-77RR 45H26 34-65RR 45H73

Days after seeding
P. Brassicae DNA found in five canola cultivars grown in clubroot-infested soil

<table>
<thead>
<tr>
<th>Days after seeding</th>
<th>Amount of DNA (ng µL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 days</td>
<td>a a a a a</td>
</tr>
<tr>
<td>6 days</td>
<td>b</td>
</tr>
<tr>
<td>8 days</td>
<td>b b a a b</td>
</tr>
<tr>
<td>10 days</td>
<td>c c b a b ab</td>
</tr>
</tbody>
</table>

Legend:
- 45H29
- 73-77RR
- 45H26
- 34-65RR
- 45H73
Relationship between amount of *P. Brassicae* DNA and root hair colonization in **five** canola cultivars

Susceptible cultivars

- **45H29**
 - $y = 2.8853x - 41.027$
 - $r^2 = 0.93$

- **45H26**
 - $y = 1.1247x - 20.231$
 - $r^2 = 0.76$

Resistant cultivars

- **73-77RR**
 - $y = 2.3116x - 28.485$
 - $r^2 = 0.81$

- **34-65RR**
 - $y = 0.9871x - 19.223$
 - $r^2 = 0.73$

- **45H73**
 - $y = 1.0281x - 21.58$
 - $r^2 = 0.71$
P. Brassicae DNA found in canola grown in clubroot-infested soil at four intervals after seeding

Day 4

y = 0.0076x + 0.0247
r² = 0.80

Day 6

y = 0.5329x - 1.4247
r² = 0.82

Day 8

y = 0.2321x + 8.0729
r² = 0.90

Day 10

y = 0.6437x + 0.9555
r² = 0.99
Relationship between amount of *P. Brassicae* DNA and root hair colonization in five canola cultivars at four sampling dates

\[y = 0.6944x - 7.1887 \]

\[r^2 = 0.6388 \]
Results:

- A strong linear relationship was found between root hair infection and the amount of pathogen DNA.

- In susceptible cultivars the amount of pathogen DNA rose more sharply than in the resistant cultivars.

- Height of both susceptible and resistant cultivars was reduced after inoculation with the pathogen.
Effects of growing resistant cultivars on spore populations

Widespread release of genetically resistant canola hybrids in 2010
16x10^9 spores/matured gall

≈ 800x10^6 spores/g gall, ≈ 20 g/gall of matured plant

Root galls release millions of spores into soil
Quantification of *P. brassicae* by microscopy and qPCR analysis

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Resting spore (g)-1 soil</th>
<th>Ct Value</th>
<th>DNA (ng) -µL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant cultivar</td>
<td>1.0×10⁸ b</td>
<td>24.75 a</td>
<td>0.338 b</td>
</tr>
<tr>
<td>Susceptible cultivar</td>
<td>2.0×10⁸ a</td>
<td>20.18 b</td>
<td>6.248 a</td>
</tr>
<tr>
<td>Fallow control</td>
<td>9.2×10⁷ c</td>
<td>25.24 a</td>
<td>0.215 b</td>
</tr>
</tbody>
</table>

DNA was extracted from 0.5 g soil after adding macerated gall tissue after the first cycle of cropping.
12. Effects of Cropping Clubroot-Resistant Canola Plants on Plasmodiophora brassicae Resting Spore Populations in the Soil

By

Plant Pathology 2012 (accepted)
Effects of Cycles of Resistant Canola Lines on Clubroot Spore Populations in Infested Soil

Objective:
To evaluate the effects of repeatedly growing the same resistant cultivar on:
• Resting spore populations of *P. brassicae*
• Subsequent severity of clubroot in susceptible canola.
A. Effects of growing resistant cultivars on clubroot severity in subsequent crops

- Canola cvs 45H29 (R) and 45H26 (S) were grown in inoculated soilless mix. A fallow control (F) was added.
- After 4 wk, roots were re-incorporated into the soil.
- A new crop (same cultivar) was replanted into the soil.
- Three treatments: RRRS, SSSS, FFFS
- Root weight, plant height, clubroot incidence and severity, and resting spore populations were recorded after each cycle.
Effect of sequential growth of resistant and susceptible canola cultivars on plant height

Cropping cycles of canola cultivars:

- **R**
- **S**
- **RR**
- **SS**
- **RRR**
- **SSS**
- **RRRS**
- **SSSS**
- **FFFS**

Plant height (cm)
Effect of sequential growth of resistant and susceptible canola cultivars on root biomass

Cropping cycles of canola cultivars

Fresh root weight (g)
Effect of sequential growth of resistant and susceptible canola cultivars on clubroot severity

Clubroot severity (0-3 scale)

Cropping cycles of canola cultivars
Effect of sequential growth of resistant and susceptible canola cultivars on index of disease

Index of disease (%) vs. Cropping cycles of canola cultivars
Results - Effects of growing resistant cultivars on clubroot severity in subsequent crops and resting spore population

- **Plant height**: FFFS>RRRS>SSSS
- **Greater root mass** in the susceptible cultivar resulted from gall formation.
- **At the end of fourth cropping cycle**, the **disease severity** on a susceptible canola cultivar grown in the potting mixture was **10-fold lower in the RRRS compared to the SSSS cropping sequence**.
- **The clubroot severity in FFFS sequence** was also very **low** compared to the **SSSS sequence**.
Resting spores x 10^5 g soil-less mix

Cropping cycles of canola cultivars

- R
- S
- F
- RR
- SS
- FF
- RRR
- SSS
- FFF
- RRRS
- SSSS
- FFFS

Legend:
- a
- b

Graph showing the comparison of resting spores across different cropping cycles of canola cultivars.
Results - Effects of resistant cultivars on resting spore population

• The number of resting spores following the SSSS sequence was 5 and 15-fold higher than in the FFFS and RRRS sequences, respectively.
• After each cycle of cropping of susceptible canola (S, SS, SSS and SSSS) the inoculum density gradually increased.
• The resting spore density in the Susceptible sequence was greater relative to the Resistant or Fallow sequences.
B. Resting spore populations after cropping resistant and susceptible canola

- 45H29 (R) and 45H26 (S) canola cultivars were grown at 2 sites in heavily infested field soil.
- On August 16, 20 plants per replicate of a cultivar were uprooted and washed.
- Gall mass and spores per gram of gall tissue were recorded.
Spore production in resistant and susceptible canola cultivars

<table>
<thead>
<tr>
<th>Gall mass (g)</th>
<th>Spores/g X 10^10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistant</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Gall mass</td>
<td>Spores/g</td>
</tr>
<tr>
<td>2.5</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>3.5</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Bar chart showing gall mass and spore production for resistant and susceptible canola cultivars.
Results - Resting spore contribution due to cropping resistant and susceptible canola

- The **gall mass** produced by the susceptible canola cultivar was **14-fold greater** compared to the resistant canola cultivar.
- **14% of 45H29** were infected with clubroot; **100% of 45H26** plants were infected.
- Galls from the susceptible canola produced **10^{10} spores /g gall** while those from the resistant canola produced **0.6×10^{10} spores /g gall.**
Conclusions

• Growing susceptible canola contributed more resting spores into the soil population than growing the resistant cultivar.
• Repeated growing of resistant canola and fallowing both reduced resting spore populations in the soil.
• However, repeated cultivation of a resistant cultivar may result in selection for pathogen phenotypes that can overcome this source of resistance.
• Resistance Stewardship is needed.
Acknowledgments

- Graduate students, Research personnel and Collaborators
- Canola Council through AAFC Clubroot Risk Mitigation Initiative
- Alberta Crop Industry Development Fund
- Agriculture & Food Council
- ACPC, SaskCanola, MCGA and other industry partners
Alberta Agriculture
Teamwork Recognition Award 2011

Thanks for your attention!